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For more than 25 years, the Department of Environment (DOE) of Malaysia has

implemented a water quality index (WQI) that uses six key water quality

parameters: dissolved oxygen (DO), biochemical oxygen demand (BOD),

chemical oxygen demand (COD), pH, ammoniacal nitrogen (AN), and

suspended solids (SS). Water quality analysis is an essential component of

water resources management that must be properly managed to prevent

ecological damage from pollution and to ensure compliance with

environmental regulations. This increases the need to define an efficient

method for WQI analysis. One of the major challenges with the current

calculation of the WQI is that it requires a series of sub-index calculations

that are time consuming, complex, and prone to error. In addition, the WQI

cannot be calculated if one ormore water quality parameters aremissing. In this

study, the optimization method of WQI was developed to address the

complexity of the current process. The potential of data-driven modeling,

i.e., Support Vector Machine (SVM) based on Nu-Radial basis function with

10-fold cross-validation, was developed and explored to improve the

prediction of WQI in Langat watershed. A thorough sensitivity analysis under

six scenarios was also conducted to determine the efficiency of the model in

WQI prediction. In the first scenario, the model SVM-WQI showed exceptional

ability to replicate the DOE-WQI and obtained statistical results at a very high

level (correlation coefficient, r > 0.95, Nash Sutcliffe efficiency, NSE >0.88,
Willmott’s index of agreement, WI > 0.96). In the second scenario, themodeling

process showed that the WQI can be estimated without any of the six

parameters. It can be seen that the parameter DO is the most important

factor in determining the WQI. The pH is the factor that affects the WQI the

least. Moreover, scenarios three to six show the efficiency of themodel in terms

of time and cost byminimizing the number of variables in the input combination

of the model (r > 0.6, NSE >0.5 (good), WI > 0.7 (very good)). In summary, the

model will greatly improve and accelerate data-driven decisionmaking in water

quality management by making data more accessible and attractive without

human intervention.
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1 Introduction

The term “water pollution” refers to the contamination of

several types of water, including surface water (oceans, lakes, and

rivers) as well as groundwater. A significant factor in the growth

of this issue is inadequate treatment given to pollutants before

being released either directly or indirectly into bodies of water

(Wan Mohtar et al., 2017). Changes in water quality have

substantial effects not just on marine environments, but also

on the availability of public water supplies and agriculturally

useable fresh water. In developing nations, it is common for the

economy to grow rapidly, and every project that contributes to

this growth may be detrimental to the environment. For long-

term water management and to protect people and the

environment, it is essential to monitor and evaluate water

quality (Yotova et al., 2021).

The water quality index, also known as WQI, is derived from

data on water quality and is used to determine the current state of

river water quality (Banda and Kumarasamy, 2020). When

evaluating the degree of change in water quality, numerous

variables must be considered. WQI is an index that doesn’t

have any dimensions. It is made up of specific water quality

parameters. WQI provides a method for classifying the water

quality of bodies of water both historically and at present. The

meaningful value of the WQI can impact the decisions and

actions of policymakers (Aljanabi et al., 2021). The water

quality improves as the index number on a scale from 1 to

100 increases. River stations that have a score of 80 or higher are

generally considered to have water quality that satisfies the

standards for being classified as clean rivers. The water quality

is regarded to be polluted if WQI is lower than 40, whereas

stations with a value between 40 and 80 signify that the water

quality is indeed slightly polluted (Yahya et al., 2019).

Globally, there are several WQI calculation techniques.

Among these, are the Interim National Water Quality

Standards for Malaysia (INWQS), the United States National

Sanitation Foundation Water Quality Index, the Florida Stream

Water Quality Index, the Canadian Water Quality Index, the

British Columbia Water Quality Index, the Oregon Water

Quality Index, and a few others (Bui et al., 2020).

In general, calculating the WQI necessitates a set of sub-

indexes transformations, which are lengthy computation,

complicated, and error prone (Rana and Ganguly, 2020).

Complex and nonlinear interactions exist between the WQI

and other water quality parameters. Computing a WQI can be

hard and take a long time because different WQIs use different

formulas, which can lead to mistakes (Asadollah et al., 2021). A

major challenge is that the formula of the WQI cannot be

calculated if one or more water quality parameters are missing

(Othman et al., 2020). In addition, several of the criteria

necessitate a time-consuming, exhaustive procedure for

sample collection, which must be conducted by trained

professionals to guarantee a precise examination of samples

and the display of results (Kachroud et al., 2019). Despite

enhanced technology and equipment, extensive spatial and

temporal river water quality monitoring is hampered by high

operational and administrative costs.

This discussion has demonstrated that there is no global

WQI methodology (Aljanabi et al., 2021). This raises the need to

develop alternative approaches to calculate the WQI in a

computationally efficient and accurate manner. Such an

improvement could be useful to environmental resource

managers in monitoring and assessing river water quality. In

this context, some researchers have successfully predicted the

WQI using artificial intelligence (Agrawal et al., 2021; Elbeltagi

et al., 2022; Mokhtar et al., 2022). Artificial intelligence-based

machine learning modelling avoids sub-index computations and

generates a WQI result quickly (Gupta et al., 2019). Artificial

intelligence-based machine learning algorithms are gaining

popularity because of their non-linear architectures, ability to

predict complicated events, capacity to manage big datasets

including data of varied sizes, and insensitivity to incomplete

data (Hameed et al., 2017). Their capability to predict depends

totally on the approach and precision of data gathering and

processing (Malik et al., 2020).

Ho et al. (2019) investigated the influence of six main input

parameters (DO, BOD, COD, SS, pH, and AN) on the prediction

of WQI classes using the Decision Tree machine learning model.

The purpose of the modeling experiments is to evaluate the

accuracy of the model’s prediction and classification based on

reduced water quality parameters and a variety of scenarios. The

results show that the model is able to predict the WQI class.

Artificial neural networks (ANN) were used by Othman et al.

(2020) to develop an approach to calculate the WQI from six

input parameters (DO, BOD, COD, SS, pH, and AN) instead of

using the parameter index when one of the parameters was not

available. A comprehensive sensitivity analysis was performed by

dropping each of the six water quality parameters from the input

to identify the most influential input parameters. The data show

that DO has the greatest influence onWQI, while pH has the least

influence.

Bui et al. (2020) developed four stand-alone methods

(Random Forest, M5P, Random Tree, and Reduced Error

Pruning Tree) and 12 hybrid algorithms (combinations of

stand-alone methods with bagging, CV parameter selection,

and randomizable filtered classification) for predicting the

WQI of Iran. Ten different input combinations were

generated by minimizing each parameter. The optimal input
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combinations vary depending on the algorithm and

catchment type.

Asadollah et al. (2021) present a new ensemble machine

learning model, Extra Tree Regression, for predicting monthly

WQI values in the Lam Tsuen River in Hong Kong. The monthly

input parameters for water quality BOD, COD, DO, electrical

conductivity, nitrate-nitrogen, nitrite-nitrogen, phosphate, pH,

temperature, and turbidity are used to build predictive models.

By reducing the number of input parameters, different

combinations of input data are evaluated. The results show

promising prediction of WQI.

Support vector machine (SVM) is a well-known machine

learning technology that is frequently employed for data-driven

modelling in engineering applications, natural behavior, and

TABLE 1 Coordinates of selected sampling water quality monitoring station.

Station DOE station code Coordinate Location Sampling data

Latitude Longitude

S01 L15 03°02′46.0″ N 101°46′38.8″ E Pekan Batu 11 Once in a month 2000–2019

S02 L05 02°59′52.2″ N 101°47′14.8″ E Kajang Bridge

S03 L04 02°57′51.4″ N 101°47′01.1″ E Near west country estate

FIGURE 1
Water quality monitoring stations of the Langat River.
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water quality research (Ling et al., 2019; Yahya et al., 2019; Ismail

et al., 2021; Leong et al., 2021). Solano Meza et al. (2019)

estimated the generation of municipal waste in the city of

Bogota using the SVM model. The performance of the SVM

model was compared with that of the decision tree and ANN.

Based on the results, it was determined that SVM is the best

model for this type of analysis. A hybrid method, known as

Multiple Model-SVM, was introduced to predict pan

evaporation, and compared with two stand-alone models,

SVM and ANN (Ghorbani et al., 2021). The hybrid SVM

model successfully improved the prediction of pan

evaporation and simplified the complexity of the process.

Despite its complex calculations, nonlinearity, and

stochasticity, SVM models can be employed to efficiently

predict water quality although monitoring water quality

measures is challenging (Ho et al., 2019). The adaptability

of SVM models enables the development of superior and

more efficient models to address the challenges of monitoring

water quality parameters (Leong et al., 2021). Nonlinear,

high-dimensional, localized minimums, and other partial

elements may all be resolved for relatively small samples

by using SVM. Additionally, SVM is modular, allowing

component designs to be implemented individually. This

study demonstrates how SVM can be used to estimate the

quality of water in six different situations where the

measurement data contains hidden dynamic processes. From

the previous studies, not all the research attempted to predict

WQI but instead focused on predicting only one parameter

(Yahya et al., 2019). Leong et al. (2021) predicted the WQI using

the SVM and least square SVM machine learning methods. Both

models were trained with all 31 input parameters and six parameters

originally used to calculate WQI. Both SVM models show that the

accuracy is higher with only six parameters than with all 31 input

parameters.

With this background, the main objective of this study is

to develop a predictive model for the WQI using a robust

approach based on an SVM model to address the challenges

and complexity of the existing WQI. The aim of this model is

FIGURE 2
Overview of workflow to build the predictive model.
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to predict the WQI with minimal parameter combinations,

and it is of great help when one or more parameters are

missing. A sensitivity analysis is performed under six

different scenarios to evaluate the degree of uncertainty

associated with the many possible combinations of input

parameters.

2 Methodology

2.1 Area study and data set

The Langat River catchment is in the western part of

Peninsular Malaysia, more specifically between latitudes 2° 40′
152″ N and 3° 16′ 15″ N and longitudes 101° 19′ 20″ E to 102° 1′
10″ E (Hamzah et al., 2021). The catchment covers an area of

about 2,394.38 km2, with the main river channel being about

141 km long. The river flows south into the Lower Mainland and

west to the coast of Selangor State, with its mouth in the Strait of

Malacca (Ebrahimian et al., 2018). This river basin, which is the

most densely populated in Malaysia, is believed to offset the

benefits of overdevelopment in the Klang Valley (Wan Mohtar

et al., 2017). It is an important raw water resource for drinking,

recreational, industrial, and agricultural purposes (Ahmed et al.,

2021). Within the Langat River, there are four sub-basins

(Kajang, Dengkil, Lui, and Semenyih). The largest sub-basin,

Kajang, was chosen for water quality assessment. The sub-basin

is in the center of the Langat River, with variable water quality.

The downstream part of the Langat River has been designated as

one of 42 contaminated tributaries in Peninsular Malaysia. As a

result, water quality is a major concern, as river water is a vital

TABLE 2 Input combination data for each scenario in sensitivity analysis, with the considered parameter is marked with “X”.

Scenario Model Physical-chemical water quality parameters

DO BOD COD SS pH AN

1 SVM1-WQI X X X X X X

2 SVM2-WQI X X X X X

SVM3-WQI X X X X X

SVM4-WQI X X X X X

SVM5-WQI X X X X X

SVM6-WQI X X X X X

SVM7-WQI X X X X X

3 SVM8-WQI X X X X

SVM9-WQI X X X X

SVM10-WQI X X X X

SVM11-WQI X X X X

SVM12-WQI X X X X

4 SVM13-WQI X X X

SVM14-WQI X X X

SVM15-WQI X X X

SVM16-WQI X X X

5 SVM17-WQI X X

SVM18-WQI X X

SVM19-WQI X X

6 SVM20-WQI X

SVM21-WQI X

TABLE 3 Evaluation indicators and associated rating of performance.

Indicator Rating of performance Performance measures

NSE Very good NSE> 0.80

Good 0.70<NSE≤ 0.80
Satisfactory 0.45<NSE≤ 0.70
Unsatisfactory NSE≤ 0.45

PBIAS Very good |PBIAS|< 10
Good 10≤ |PBIAS|< 15
Satisfactory 15≤ |PBIAS|< 20
Unsatisfactory |PBIAS|≥ 20

WI Very good 0.75<WI≤ 1.00

Good 0.65≤WI≤ 0.75

Satisfactory 0.50<WI< 0.65
Unsatisfactory WI≤ 0.5
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supply of drinking water for the citizens of Langat River (Farid

et al., 2016).

The Department of Environment (DOE) Malaysia,

Ministry of Natural Resources and Environment had

implemented WQI to measure the quality of water in

Malaysia for over 25 years. DOE uses six water parameters

quality to define the status of surface water quality based on

INWQS, which are dissolved oxygen (DO), biochemical

oxygen demand (BOD), chemical oxygen demand (COD),

pH value, ammoniacal nitrogen (AN) and suspended solid

(SS). This study used 240 observations of Langat River water

quality data for six selected variables acquired fromMalaysia’s

DOE between 2000 and 2019. Three stations were selected for

water quality monitoring: S01, S02, and S03. The details for

the selected sampling water quality monitoring stations are

depicted in Table 1; Figure 1.

2.2 SVM model development

Given how important it is to protect the environment, the

main goal of this study is to build an SVM model-based tool for

predicting WQI and displaying measurement data in very

specific phases. In this regard, the section will concentrate on

constructing a prediction model for WQI with a reliable method

by employing the SVM model to estimate the WQI without

utilizing parameter indices, but rather by directly using physical

values from parameters. The major advantage of this model is

that the computation of WQI is possible especially when one or

more of the parameters is missing. The following pre-processing

steps were employed to enhance the prediction model in this

study. Figure 2 depicts a summary of the processes followed to

develop the prediction model for this study. During the various

stages of model development, “R programming” is used as a tool

TABLE 4 Performance of SVM model with four kernel functions.

Kernel function Training Testing

MAE r MAE r

Linear 0.043 0.951 0.026 0.978

RBF 0.024 0.990 0.026 0.989

Polynomial 0.074 0.904 0.056 0.890

Sigmoid 0.185 0.321 0.053 0.904

The best kernel function is highlighted in bold.

TABLE 5 Performance of RBF kernel functions.

RBF kernel parameters Training Testing

MAE r MAE r

Epsilon-RBF 0.0031 0.9987 0.0024 0.9991

Nu-RBF 0.0014 0.9994 0.0010 0.9996

The best RBF kernel function is highlighted in bold.

TABLE 6 Correlation matrix between selected water quality parameters and the WQI.

DO BOD COD SS pH AN WQI

DO 1.000

BOD −0.764 1.000

COD −0.530 0.531 1.000

SS 0.210 −0.183 −0.119 1.000

pH 0.847 −0.715 −0.649 0.053 1.000

AN −0.897 0.781 0.572 −0.270 −0.004 1.000

WQI 0.951 −0.846 −0.636 −0.238 -0.034 −0.624 1.000
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for performing all analyzes (Karatzoglou et al., 2022; Meyer,

2022).

2.2.1 Data imputation
To begin, data imputation for water quality has been done,

with the CART method used to impute and fill in data gaps.

Missing data is an unavoidable occurrence in water quality

monitoring systems (Hamzah et al., 2021). The bulk of data

analysis techniques requires the input of comprehensive data sets

(Pillai et al., 2019; Hadeed et al., 2020). Incomplete data might

result in skewed or erroneous results, which can have a

detrimental effect on the conclusions taken from data on

water quality (Ratolojanahary et al., 2019). CART is an

established machine learning classification technique (Mauro

Assis Gomes et al., 2020) that utilizes the concept of classifiers

and cut points in variables to split the sample. The sample was

subsampled into broader, more homogeneous subsamples using

cut points. In both subsamples, the splitting method is used more

than once. This makes a binary tree with many splits (Rodríguez

et al., 2021).

2.2.2 Water quality index
After imputation of the data, DOE-WQI is calculated and

compared with the predicted SVM-WQI. The WQI is derived

from water quality data and is used to determine the current

status of a river’s water quality. Numerous variables must be

TABLE 7 Performance evaluations for the first scenario.

Model Station Training Testing

MAE r NSE WI PBIAS MAE r NSE WI PBIAS

SVM1-WQI S01 0.0047 0.9961 0.9921 0.9980 -0.10 0.0357 0.9521 0.8817 0.9637 3.00

S02 0.0038 0.9992 0.9984 0.9996 0.00 0.0391 0.9701 0.9256 0.9784 4.10

S03 0.0046 0.9989 0.9977 0.9994 0.00 0.0288 0.9741 0.9449 0.9852 −1.30

TABLE 8 Performance evaluations for the second scenario.

Model Station Training Testing

MAE r NSE WI PBIAS MAE r NSE WI PBIAS

SVM2-WQI S01 0.0267 0.9724 0.9448 0.9852 −0.30 0.0522 0.9249 0.8285 0.9470 4.30

S02 0.0101 0.9972 0.9944 0.9986 −0.10 0.0531 0.9597 0.9072 0.9731 4.50

S03 0.0495 0.9267 0.8539 0.9567 −1.00 0.0495 0.9267 0.8539 0.9567 -1.00

SVM3-WQI S01 0.0040 0.9961 0.9920 0.9980 0.20 0.0336 0.9459 0.8796 0.9639 2.60

S02 0.0046 0.9991 0.9982 0.9995 −0.10 0.0377 0.9666 0.9248 0.9786 3.10

S03 0.0029 0.9994 0.9988 0.9997 0.00 0.0224 0.9785 0.9570 0.9888 −0.30

SVM4-WQI S01 0.0287 0.9771 0.9541 0.9879 0.60 0.0667 0.8902 0.7813 0.9345 3.40

S02 0.0111 0.9971 0.9943 0.9986 0.00 0.0452 0.9750 0.9379 0.9821 2.90

S03 0.0149 0.9907 0.9814 0.9953 0.10 0.0514 0.9290 0.8558 0.9607 −2.20

SVM5-WQI S01 0.0095 0.9934 0.9866 0.9966 0.40 0.0647 0.8844 0.7763 0.9310 2.30

S02 0.0137 0.9967 0.9933 0.9983 0.40 0.0426 0.9733 0.9426 0.9849 3.70

S03 0.0492 0.9230 0.8464 0.9591 −1.40 0.0492 0.9230 0.8464 0.9591 −1.40

SVM6-WQI S01 0.0178 0.9907 0.9815 0.9953 0.00 0.0512 0.9410 0.8729 0.9622 2.50

S02 0.0118 0.9973 0.9946 0.9986 0.30 0.0506 0.9602 0.9113 0.9746 3.90

S03 0.0449 0.9401 0.8817 0.9667 −0.90 0.0449 0.9401 0.8817 0.9667 −0.90

SVM7-WQI S01 0.0175 0.9898 0.9793 0.9947 0.40 0.0517 0.9131 0.8104 0.9423 4.30

S02 0.0076 0.9970 0.9941 0.9985 −0.10 0.0732 0.9234 0.8396 0.9515 4.40

S03 0.0677 0.8456 0.7137 0.9127 0.00 0.0677 0.8456 0.7137 0.9127 0.00
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considered when evaluating the degree of change in water

quality. The WQI is an index that has no dimensions. It is

composed of specific water quality parameters. The WQI

provides a method for classifying water quality of water

bodies both in the past and in the present. The meaningful

value of the WQI can influence the decisions and actions of

policy makers. Water quality improves the higher the index value

on a scale of 1–100. River stations that have a score of 80 or

higher are generally classified as clean rivers because they meet

water quality standards. Water quality is considered polluted

when the WQI is below 40, while stations with a value between

40 and 80mean that water quality is even slightly polluted (Yahya

et al., 2019).

For more than 25 years, DOE has used a river WQI that

includes six key water quality parameters: Dissolved oxygen

(DO), biochemical oxygen demand (BOD), chemical oxygen

demand (COD), pH, ammoniacal nitrogen (AN) and

suspended solids (SS). The WQI is used as the basis for

environmental assessment of a watercourse to classify

pollution loads and establish classes of beneficial uses, as

TABLE 9 Performance evaluations for the third scenario.

Model Station Training Testing

MAE r NSE WI PBIAS MAE r NSE WI PBIAS

SVM8-WQI S01 0.0365 0.9629 0.9268 0.9803 −0.20 0.0573 0.9248 0.8363 0.9495 3.20

S02 0.0191 0.9919 0.9836 0.9958 0.20 0.0461 0.9652 0.9266 0.9795 2.10

S03 0.0451 0.9258 0.8553 0.9578 −0.30 0.0451 0.9258 0.8553 0.9578 -0.30

SVM9-WQI S01 0.0306 0.9762 0.9521 0.9873 0.30 0.0750 0.8539 0.7280 0.9174 1.00

S02 0.0161 0.9955 0.9909 0.9977 −0.10 0.0440 0.9752 0.9399 0.9829 3.20

S03 0.0417 0.9445 0.8864 0.9714 0.40 0.0417 0.9445 0.8864 0.9714 0.40

SVM10-WQI S01 0.0207 0.9877 0.9756 0.9937 0.20 0.0469 0.9403 0.8692 0.9614 3.20

S02 0.0121 0.9969 0.9937 0.9984 0.40 0.0465 0.9672 0.9297 0.9812 4.00

S03 0.0411 0.9356 0.8727 0.9669 −0.30 0.0411 0.9356 0.8727 0.9669 -0.30

SVM11-WQI S01 0.0226 0.9851 0.9702 0.9924 0.50 0.0463 0.9527 0.8999 0.9527 1.60

S02 0.0085 0.9982 0.9964 0.9991 −0.10 0.0657 0.9371 0.8669 0.9601 3.30

S03 0.0361 0.9530 0.9064 0.9745 1.00 0.0361 0.9530 0.9064 0.9745 1.00

SVM12-WQI S01 0.0250 0.9838 0.9672 0.9915 0.60 0.0525 0.9035 0.7966 0.9035 4.20

S02 0.0109 0.9964 0.9927 0.9982 −0.20 0.0730 0.9189 0.8380 0.9536 4.10

S03 0.0577 0.9029 0.8037 0.9465 2.40 0.0577 0.9029 0.8037 0.9465 2.40

TABLE 10 Performance evaluations for the fourth scenario.

Model Station Training Testing

MAE r NSE WI PBIAS MAE r NSE WI PBIAS

SVM13-WQI S01 0.0345 0.9682 0.9364 0.9828 0.10 0.0767 0.8617 0.7271 0.9637 3.90

S02 0.0337 0.9783 0.9570 0.9889 0.40 0.0649 0.9422 0.8854 0.9684 2.50

S03 0.0628 0.8589 0.7344 0.9132 0.40 0.0628 0.8589 0.7344 0.9132 0.40

SVM14-WQI S01 0.0449 0.9559 0.9135 0.9767 0.40 0.0732 0.8811 0.7756 0.9338 0.90

S02 0.0204 0.9948 0.9894 0.9973 0.20 0.0552 0.9661 0.9131 0.9751 6.00

S03 0.0587 0.8953 0.7935 0.9441 1.40 0.0587 0.8953 0.7935 0.9441 1.40

SVM15-WQI S01 0.0600 0.9059 0.8159 0.9454 2.00 0.0865 0.8250 0.6635 0.9048 −0.60

S02 0.0474 0.9769 0.9538 0.9881 1.00 0.0626 0.9586 0.8913 0.9707 9.00

S03 0.0774 0.8101 0.6204 0.8981 1.70 0.0774 0.8101 0.6204 0.8981 1.70

SVM16-WQI S01 0.0401 0.9589 0.9178 0.9782 1.40 0.0823 0.8123 0.6388 0.8917 4.50

S02 0.0246 0.9927 0.9852 0.9962 0.50 0.0741 0.9274 0.8582 0.9597 2.00

S03 0.0807 0.8391 0.6111 0.9087 −1.00 0.0807 0.8391 0.6111 0.9087 −1.00
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provided in INWQS. The formula for calculating the WQI is

given in Eq. 1. In Eq. 1, DO has the highest weighting, while

pH has the lowest weighting. Before calculating the WQI, each of

the six parameters is first converted into a sub-index (SI) and the

SIs are selected according to the mathematical relationships that

give the correct combination and are given in Eqs 2–18.

DOE-WQI � 0.22 SIDO( ) + 0.19 SIBOD( ) + 0.16 SICOD( )
+0.15 SIAN( ) + 0.16 SISS( ) + 0.12 SIpH( ) (1)
Sub − indexDO % saturation( ):

x≤ 8, SIDO � 0 (2)
x≥ 92, SIDO � 100 (3)

8< x< 92 , SIDO � −0.395 + 0.03x2 − 0.0002x3 (4)
Sub − index BOD mg/L( ):

x≤ 5 , SIBOD � 100.4 − 4.23x (5)
x> 5, SIBOD � 108−0.055x − 0.1x (6)

Sub − indexCOD mg/L( ):
x≤ 20, SICOD � −1.33x + 99.1 (7)
x> 20, SICOD � 103e−0.0157x − 0.04x (8)

Sub − index AN mg/L( ):

x≤ 0.3, SIAN � 100.5 − 105x (9)
0.3< x< 4 , SIAN � 94e−0.573x − 5 x − 2| | (10)
x≥ 4, SIAN � 0 (11)

Sub − index SS mg/L( ):
x≤ 100, SISS � 97.5e−0.00676x + 0.05x (12)
100< x< 1000, SISS � 71e−0.0061x − 0.015x (13)
x≥ 1000, SISS � 0 (14)

Sub − index pH:

x< 5.5, SIpH � 17.02 − 17.2x + 5.02x2 (15)
x< 7, SIpH � −242 + 95.5x − 6.67x2 (16)
x< 8.75, SIpH � −181 + 82.4x − 6.05x2 (17)
x≥ 8.75, SIpH � 536 − 77x + 2.76x2 (18)

2.2.3 Data normalization
After DOE-WQI done computed, the water quality

parameters and DOE-WQI data were then normalized using

the min-max method to avoid overfitting and ensure the

accuracy of the results due to the scale differences between

the various water quality parameters, and the data

TABLE 11 Performance evaluations for the fifth scenario.

Model Station Training Testing

MAE r NSE WI PBIAS MAE r NSE WI PBIAS

SVM17-WQI S01 0.0571 0.9343 0.8717 0.9635 0.50 0.0799 0.8317 0.6816 0.8997 3.30

S02 0.0259 0.9839 0.9679 0.9917 0.40 0.0772 0.8985 0.8032 0.9426 3.30

S03 0.0735 0.8253 0.6626 0.9026 −1.90 0.0735 0.8253 0.6626 0.9026 −1.90

SVM18-WQI S01 0.1012 0.7582 0.5633 0.8445 3.60 0.1066 0.7337 0.5263 0.8365 3.20

S02 0.0524 0.9723 0.9448 0.9856 1.20 0.0708 0.9654 0.8900 0.9697 10.80

S03 0.0839 0.7855 0.5865 0.8822 0.90 0.0839 0.7855 0.5865 0.8822 0.90

SVM19-WQI S01 0.0620 0.9214 0.8479 0.9562 −0.30 0.0940 0.7735 0.5963 0.8655 1.30

S02 0.0318 0.9866 0.9729 0.9930 0.80 0.0794 0.9272 0.8433 0.9528 5.20

S03 0.0841 0.8364 0.5713 0.9047 −0.90 0.0841 0.8364 0.5713 0.9047 −0.90

TABLE 12 Performance evaluations for the sixth scenario.

Model Station Training Testing

MAE r NSE WI PBIAS MAE r NSE WI PBIAS

SVM20-WQI S01 0.1248 0.6474 0.4179 0.7580 1.00 0.1191 0.6588 0.4178 0.7760 4.00

S02 0.1323 0.7148 0.4786 0.8162 8.60 0.1734 0.5330 0.4172 0.6975 12.00

S03 0.0954 0.7306 0.5271 0.8392 −0.60 0.0954 0.7306 0.5271 0.8392 −0.60

SVM21-WQI S01 0.2767 −0.3001 −1.3291 0.3424 −32.20 0.2482 −0.2612 −1.2853 0.3822 −33.00

S02 0.4020 −0.6600 −1.5602 0.2854 −43.00 0.3357 −0.5074 −0.8855 0.3240 −35.00

S03 0.3362 −0.3081 −5.0073 0.3210 −48.80 0.3362 −0.3081 −5.0073 0.3210 −48.80

Frontiers in Environmental Science frontiersin.org09

Mamat et al. 10.3389/fenvs.2022.1061835

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1061835


normalization is essential when dealing with attributes with

varying scales, as this may result in lesser effectiveness of a

critical attribute (with a lower scale) due to the presence of other

attributes with varying scales (Adeyemo et al., 2020).

Additionally, the normalization of data helps accelerate the

training process and lessen the impact of dataset outliers (Ho

et al., 2019). Thus, after normalizing the dataset, the machine

learning model’s efficiency increases. The strength of this

approach is that it maintains the exact relationships between

the data items. It performs exceptionally well and does not inject

any potential bias into the data (Dong et al., 2019).

2.2.4 Data partitioning
Finally, data was partitioned for building the predictive

model to optimize the model’s performance. The fundamental

principle behind data partitioning is to exclude a subset of

accessible data from analysis and utilize it afterward to verify

the model. The data partition is utilized to avoid too optimistic

model precision estimations. Data partitioning is typically used

in conjunction with supervised learning approaches (e.g., SVM),

in which a predictive model is chosen from a set of models based

on their performance on the training set. In this study, 80% of the

data were randomly classified for training purposes, while 20%

were classified to test the results using a 10-fold cross-validation

technique. Even though there is no broadly adopted formula for

modelling temporal and spatial predictions, this ratio is the most

utilized method (Bui et al., 2020; Ghorbani et al., 2021).

2.2.5 Regression in SVM
SVM, which was initially intended to handle the classification

problem and is currently being expanded to address the

regression challenge (Ling et al., 2019). The training points

FIGURE 3
Comparison of the observed (DOE-WQI) and the best predicted model (SVM-WQI) for each scenario: (A) SVM1-WQI; (B) SVM3-WQI; (C)
SVM11-WQI; (D) SVM14-WQI; (E) SVM17-WQI; and (F) SVM20-WQI.
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closest to the separating hyperplane are the support vectors.

There are responsible decision functions, such as hyperplanes

that can denote the positive and negative data that has defined the

maximum margins. This indicates that the distance between the

nearest positive sample and the hyperplane should be minimized,

while the distance between the nearest negative sample and the

hyperplane should be maximized (Yahya et al., 2019). The kernel

function has the most significant impact on SVM model

prediction compared to other factors like scale factor and

regulation parameter. The regression model employs the

function defined in Eq. 19:

y x( ) � wTϕ x( ) + b (19)

here, ϕ(x) can be any nonlinear kernel function (including

the polynomial, radial basis, linear and sigmoid) and the weight

(w) and bias vectors (b) values derived from the training data set.

Estimation of coefficients w and b is performed by minimizing

the sum of the empirical risk and a complexity component,

whereas SVM regression is performed in feature space with high

dimensions through a nonlinear mapping. Iterative trial-and-

error calibration was implemented to determine the type of

kernel function to employ and the value of the regularization

parameter. SVM regression is categorized into two categories.

Epsilon regression, often known as Type 1, or Nu regression, is

the second type of regression (Behmel et al., 2016). For more

details, readers may refer to Mamat et al. (2021) to get a better

grasp of the structure of the SVM.

To build a WQI prediction model using the regression

component of the SVM model and water quality data, the

following steps must be performed in sequence.

FIGURE 4
Correlation between the observed (DOE-WQI) and the best predicted model (SVM-WQI) for each scenario: (A) SVM1-WQI; (B) SVM3-WQI; (C)
SVM11-WQI; (D) SVM14-WQI; (E) SVM17-WQI; and (F) SVM20-WQI.
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Step 1. Selection of the independent (predictor) and dependent

(target response) variables.

To determine whether the SVM regression model is capable

of learning the behavior of the WQI used by Malaysian DOE, six

water quality parameters (DO, BOD, COD, pH, AN, SS)

originally used to calculate the WQI based on Eq. 1 were

selected as input predictors (x) and the WQI as the target

response (y) in this study.

Step 2. Train the SVM regression model with the training set.

When developing a machine learning model, the data must

always be divided into a training set and a testing set. The SVM

model is trained using the values from the training set and the

WQI is predicted and evaluated using the testing set.

Step 3.Determine the kernel function and set up the parameters

for the training set

The first goal of this part is to determine the kernel functions

that best fit the SVM model that can be used to predict the WQI.

The kernel functions include linear, radial basis, polynomial, and

sigmoidal kernel functions. The same training data is used four

times to train the model for four different kernel functions. After

analyzing the performance of the four models, it is determined

which kernel has the best fitting kernel function. The optimal

kernel function is then used to train the tuning parameters of the

SVMmodel. To obtain valid predictive performance for the SVM

model, the optimal parameter settings must be carefully selected

because they all affect the generalization performance of the SVM

model. During the training phase of the SVM simulation, the

parameters are calibrated by trial and error and multiple test

runs. During the testing phase, the WQI prediction model is

configured with the optimal parameters.

Step 4. Predicting the results from the testing set.

FIGURE 5
Boxplots for (A) the training phase and (B) the testing phase.
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In this step, the WQI is predicted from the testing set using

the SVM model developed for unseen data.

Step 5. Comparison of the testing set with the predicted values.

For performance comparisons, the WQI values from the

testing set are displayed as ‘observed’, while the WQI values

predicted by the SVM are displayed as ‘predicted’.

Step 6. Visualization of the SVM results

In this step, the ‘observed’ and ‘predicted’WQI are plotted to

visualize the results and performance.

Step 7. Prediction of the WQI using the SVM model and

sensitivity analysis

After reducing the possible combinations of input predictors

from the original set of six established in Step 1, Steps 6 through

8 are performed again for sensitivity analysis for each of

Scenarios two through 6.

2.2.6 Sensitivity analysis of various modelling
scenarios

A sensitivity analysis of a developed model evaluates the

uncertainties between a model’s predictions and its input

parameters. As part of the process of establishing the model,

all six water quality measures were utilized as input variables to

assess the model’s effectiveness. There are three main purposes of

this research which are mainly to utilize the SVM model as an

alternative efficient method to predict WQI. The first scenario

was run using all six parameters as input variables which serve as

a reference model by avoiding the calculation of sub-indices and

directly using raw physical values of parameters. Second, to

demonstrate that the model can estimate WQI even with

missing parameters, a sensitivity analysis was conducted by

omitting one of the six parameters. The SVM performance

model was then tested using all the model performance

criteria used for this study to assess the significance of the

input parameters of the first scenario model. Moreover,

sensitivity analysis was very useful and reliable when sufficient

data were available to assess the relative importance of the

parameter (Bui et al., 2020). Third, this predictive modelling

puts a lot of emphasis on how accurate predictions are when

they are based on a small number of input characteristics. This

makes it easier and faster to discover the WQI of a river. Each

scenario was made by reducing the model input parameters

from the six parameters required by the DOE to five, four,

three, two, and one parameter. Implementing the proposed

support vector machine model with a minimum number of

model input variables would result in a low cost for river WQI

prediction. This might also reduce the time required to

analyze a water sample in the lab to determine the break-

off parameters. The third scenario contains four inputs,

resulting in five possible water quality parameter

configurations. In the fourth scenario, there are three

inputs, in the fifth scenario there are two inputs, and in the

sixth scenario there is just one water quality indicator

considered. Table 2 show all possible efficient combinations

of input parameters for six different scenarios.

2.3 Evaluation indicators

Several key metrics were utilized to assess the performance of

the prediction models. Comparing predicted and observed data

helped identify the optimal estimationWQImodel. MAE, r, NSE,

WI, and PBIAS were used to compare the accuracy of the

deployed models in estimating WQI. The objective function

was chosen as NSE since it is the most constraining

(Narbondo et al., 2020). MAE and r were utilized for

estimation, whereas WI and PBIAS were employed for

validation.

FIGURE 6
Normalized Taylor diagrams for (A) training phase and (B)
testing phase.
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2.3.1 Mean absolute error (MAE)
The mean difference between predicted and actual data is

defined as a mean absolute error (Avila et al., 2018). The MAE

ranges from 0 to infinity, with 0 being the best fit. Some researchers

suggest using MAE instead of RMSE (Moriasi et al., 2015; Willmott

et al., 2017). MAE is more interpretable than root mean square error

(RMSE). In mathematics, MAE is the average absolute difference

between two variables. MAE is easier to understand than the average

of squared errors. Moreover, unlike RMSE, each error affects MAE

proportionally to its absolute value.

MAE � 1
n
∑n

i�1 yi
observed − yi

predicted
∣∣∣∣ ∣∣∣∣ (20)

2.3.2 Pearson correlation coefficient (r)
Pearson correlation coefficient, r measures the degree and

direction of the linear connection between actual and predicted

data. The values might vary between -1 and 1, inclusive. r usually

appears to be the most effective and straightforward method for

evaluating variable combinations related to water quality

(Asadollah et al., 2021).

r � ∑n
i�1 yobserved

i − �yobserved( ) ypredicted
i − �ypredicted( )








































∑n

i�1 yobserved
i − �yobserved( )2∑n

i�1 ypredicted
i − �ypredicted( )2√ (21)

2.3.3 Nash Sutcliffe efficiency (NSE)
The NSE was used to evaluate the performance of the model.

As a normalized statistic, the NSE determines how much ‘noise’

is present compared to how much ‘information’ is present in the

data of an experiment (Moriasi et al., 2015). In terms of NSE, the

NSE is a measure of how well the observed and estimated data

plots match the 1:1 line. NSE is between -∞ and 1.0 (including

1), with NSE = 1 being the optimal value. Performance levels

FIGURE 7
Violin plot of observed and predicted WQI values for (A) training phase and (B) testing phase.
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between 0.0 and 1.0 are generally considered acceptable, but

values below 0.0 indicate a poorer correlation between observed

and predicted values, indicating poor performance.

NSE � 1 − ∑n
i�1 yobserved

i − ypredicted
i( )∑n

i�1 yobserved
i − �yobserved( ) (22)

2.3.4 Willmott’s index of agreement (WI)
Willmott introduced the agreement index (WI) as a standard

method for assessing the extent of model prediction error. It is

calculated by dividing the ‘potential error’ by the ‘mean square error’.

It can incorporate measurement uncertainty (Martín et al., 2017).

WI � 1 − ∑n
i�1 yobserved

i − ypredicted
i( )2

∑n
i�1 ypredicted

i − �yobserved
∣∣∣∣∣ ∣∣∣∣∣ + yobserved

i − �yobserved
∣∣∣∣ ∣∣∣∣( )2

(23)

2.3.5 Percent bias (PBIAS)
The percentage bias metric (PBIAS) quantifies the average

probability that the simulated data is greater or less than the

observed data. PBIAS is ideally 0.0, with low values indicating

efficient model simulation. Positive numbers indicate an

overestimation of the model, while negative values indicate an

underestimation of the model (Moriasi et al., 2015). PBIAS is the

deviation of the data analyzed, represented as a percentage of themean.

PBIAS � ∑n
i�1 yobserved

i − ypredicted
i( )∑n

i�1 yobserved
i( ) * 100( )⎡⎢⎣ ⎤⎥⎦ (24)

The following table contains the standard review of

performance values and ratings for NSE, WI, and PBIAS used

in this work, as indicated in Table 3 (Moriasi et al., 2015;

Rodríguez et al., 2021).

3 Results and discussion

Developing the optimal SVM model will be discussed in

detail further down. The Malaysian DOE provided the data for

the water quality analysis in this study. For SVM modelling, this

work used monthly time series data sets for six chosen

parameters (DO, BOD, COD, pH, SS, AN) from three

locations from 2000 to 2019.

3.1 SVM model development

This study’s initial goal is to identify the kernel functions that

best fit the SVM model for WQI and can be utilized to predict

WQI. Table 4 shows the results of the model prediction analysis

for several kernel function types, including Linear, Radial Basis or

Gaussian, Polynomial, and Sigmoidal kernel functions. The RBF

kernel function has the highest correlation coefficient (0.990,

0.989) during the training and testing phases, followed by linear

(0.951, 0.978), polynomial (0.904, 0.890), and sigmoid kernel

functions (0.321, 0.904). As a result, the RBF kernel function will

be employed for further development.

To achieve valid predictive performance for the SVM model,

the optimal parameter sets must be carefully chosen since they all

have an impact on SVM generalization performance. Therefore,

for the next part, two types of RBF kernel functions, Epsilon and

Nu, are trained to determine the best SVM efficiency for WQI

prediction. Based on the results of the 10-fold cross-validation,

the optimal architecture of the SVM model was chosen. K-fold

CV is a robust technique for evaluating model accuracy. In terms

of 10-fold CV value, Table 5 shows that the Nu-RBF model

outperforms the Epsilon-RBF model. According to this data, the

error variance between actual and predicted WQI values is

extremely small. This also demonstrates how effective the

combination of Nu-RBF and 10-fold CV model selection is.

Aside from that, there are two crucial factors to consider: the

gamma and capacity parameters. These elements are critical for

optimizing the structure of the SVM model that will be used in

these situations. During the training phase of the SVM

simulation, the gamma and capacity parameters, were

calibrated using several tests runs and trial and error. The

optimal gamma and capacity parameters to use for the WQI

prediction model during training and testing are capacity = 6 and

gamma = 0.5. As a result, the SVM model with a hybrid of Nu-

RBF (capacity = 6 and gamma = 0.5) and 10-fold CV is chosen as

an effective final prediction model.

3.2 Sensitivity analysis of SVM modelling
scenarios

In Malaysia, the DOE developed the WQI formula based on

the INWQS, which uses six water quality parameters

(ammoniacal nitrogen (AN), biochemical oxygen demand

(BOD), chemical oxygen demand (COD), dissolved oxygen

(DO), pH, and suspended solids (SS)). One of the primary

constraints of DOE-WQI is that if any of the six parameters

are missing, the calculation of DOE-WQI is impossible to

proceed with. To obtain actual or near-actual values for river

water, this study offered the data-driven SVM-WQI model to

solve this problem using all six parameters or a minimal number

of parameters. Sensitivity analysis with six different scenarios is

evaluated in this study to determine the best combination for

WQI prediction. In both the training and testing phases, the

accuracy of the models is assessed using statistical indices such as

MAE, r, NSE, WI, and PBIAS. A testing dataset was used to

evaluate the models, and the most effective one was chosen for

modeling and further study. This result merely reveals how well

the models match the training dataset, as all models were

constructed using the training dataset. The training data were
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not used for model evaluation. An evaluation was conducted

utilizing testing data (Bui et al., 2020). From the findings as well,

it can generally be noticed that the prediction performance is

higher in the training phase than in the testing phase. This is to be

expected because the prediction error is minimized during the

training phase, and the model built during the training phase is

tested during the testing phase (Yahya et al., 2019).

Before performing the sensitivity analysis, it is necessary to

examine the relationship between the six input parameters and

the WQI to determine the combination that provides the most

accurate prediction of the WQI. Table 6 shows the values of the

Pearson correlation matrix between the different input

parameters considered and the WQI. When evaluating the

different possible combinations of input variables, the Pearson

correlation coefficient method consistently proves to be the most

effective and easiest to understand (Malik et al., 2020; Sharafati

et al., 2020; Asadollah et al., 2021). According to Table 6, DO has

the strongest correlation with WQI, while pH has the weakest

correlation. It is also interesting to note that biochemical oxygen

demand (BOD) is the second strongest correlated parameter with

water quality index (WQI). The results shown in Table 6 are used

in selecting the different input parameter combinations for WQI

prediction, with the goal of gradually eliminating parameters that

have lower Pearson correlation with WQI. As you can see from

Tables 7, 8, 9, 10, 11, 12, a total of twenty-one different

combinations of input parameters were considered (SVM1 to

SVM21).

3.2.1 First scenario: Originally with all six
parameters

In the first scenario, the SVM1-WQI has been trained and

tested with the six originally defined input parameters that have

been used in DOE-WQI. The main goal to achieve in this

scenario is to develop an alternative model that can predict

WQI with high accuracy and stability by using direct

measured physical values without sub-index calculation within

WQI equations. The results of the SVM1-WQI implementation

for the different monitoring stations are shown in Table 7. It is

clearly shown that in both phases, the model was exceptionally

able to replicate the behavior of DOE-WQI and attained very

high accuracy. The performance for model SVM1-WQI (Station

S01: rTrain = 0.9961, MAETrain = 0.0047, rTest = 0.9521, MAETest =

0.0357; Station S02: rTrain = 0.9992, MAETrain = 0.0038, rTest =

0.9701, MAETest = 0.0391; Station S03: rTrain = 0.9989,

MAETrain = 0.0046, rTest = 0.9741, MAETest = 0.0288). The

lowest value of MAE signifies the high model robustness

along with the highest degree of r, NSE, WI, and PBIAS.

SVM1-WQI has a high degree of precision and minimal

residual error. Figures 3A, 4A which depict a time series plot

and a scatter plot, respectively, reflect this agreement. Figure 3A

depicts a comparison of the actual (DOE-WQI) and predicted

(SVM1-WQI) values for Station S03 using the chosen Nu-RBF

model. The vertical axis represents WQI data, and the horizontal

axis represents time set. The plot shows that the SVM1-WQI

model is capable of predicting WQI. This capability is visualized

by the similarity behavior of the plot between the actual and

predicted values of WQI. The closeness of this data indicates that

the deviation of error is very small and can be neglected. The

association of SVM1-WQI for Station S03 has been plotted in

Figure 4A. The vertical axis represents predicted WQI, and the

horizontal axis represents actual WQI. The scatter plot

graphically illustrates the association between the predicted

and observed values of WQI. In the diagram, the line of the

best fit is drawn as a reference and to describe the closeness of the

relationship between the predicted and the observed data. As

expected, SVM1-WQI shows excellent prediction performance

as the data points are very close to the best fit line in the testing

phase. Moreover, since SVM1-WQI is identical to the usual

DOE-WQI technique, the first scenario, which includes all six

parameters, was used as a standard benchmark for which other

scenarios could be evaluated.

3.2.2 Second scenario: Input data with five
parameters

In the second scenario, the prediction model was run based

on five different water quality parameters with six different

combinations as shown in Table 8. The statistical indicators

demonstrate the SVM model’s capacity to predict the WQI even

without the original six parameters, with a high degree of

accuracy (r, NSE, and WI criteria), all of which are more than

0.9. Furthermore, as can be seen in Table 8, among all the results

for scenario 2, model SVM3-WQI offers better-quality estimates

of WQI than the remaining models do. According to the

displayed results, SVM3-WQI achieves the highest prediction

accuracy during both the training and testing phases. The model

SVM3-WQI is the combination of DO, BOD, COD, SS, and AN,

excluding the pH parameter, with corresponding results (Station

S01: rTrain = 0.9961, MAETrain = 0.0040, rTest = 0.9459, MAETest =

0.0336; Station S02: rTrain = 0.9991, MAETrain = 0.0046, rTest =

0.9666, MAETest = 0.0377 and Station S03: rTrain = 0.9994,

MAETrain = 0.0029, rTest = 0.9785, MAETest = 0.0224). This

model is highly affecting the estimated values of WQI. As a

next step, all the possible combinations from SVM2-WQI to

SVM7-WQI are simulated, and the results are listed in Table 8. In

this predictive modelling, the effects of each water quality

parameter were studied based on the analysis. In contrast,

when DO is eliminated from the study, WQI yields the lowest

accuracy. SVM7-WQI findings demonstrate the lowest accuracy

(Station S01: rTrain = 0.9898, MAETrain = 0.0175, rTest = 0.9131,

MAETest = 0.0517; Station S02: rTrain = 0.9970, MAETrain =

0.0076, rTest = 0.9234, MAETest = 0.0732 and Station S03:

rTrain = 0.8456, MAETrain = 0.0677, rTest = 0.8456, MAETest =

0.0677). This discovery is extremely significant because it

demonstrates that DO cannot be excluded from the study

without compromising WQI’s overall performance. In the

current WQI computation, the sub-index of DO includes a
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lengthy process in which the DO concentration must first be

converted to % saturation, and then it must correspond with the

sample day’s temperature (Fondriest Environmental, 2013).

Without temperature information, the computation of the

sub-index of DO and WQI would deteriorate. Remarkably,

SVM1-WQI is able to circumvent this obstacle by adopting

direct physical DO concentration. Furthermore, pH has been

demonstrated to have a weak relationship with WQI prediction.

In Malaysia, the pH of the water flowing into rivers is closely

monitored. It is the easiest parameter to measure because it can

be easily measured on-site and does not require to be tested in a

lab. In addition, as Malaysia is a tropical country that experiences

a significant amount of rainfall every year, the rain may readily

dilute and neutralize the pH level in the rivers. Therefore, the lack

of pH from the data used to generate predictions has little to no

effect on how WQI is predicted. All quantitative results were in

agreement with the research results obtained by Othman et al.

(2020). It shows a strong correlation between the input

parameters and the target response, WQI. The accuracy of the

model performance generated by SVM3-WQI was only shown

for Station S03 using the time series plot and scatter plot in

Figure 3B shows the comparison of the actual DOE-WQI and

SVM3-WQI. Meanwhile, Figure 4B displays the association

between predicted and observed WQI values visually. The

y-axis represents the actual DOE-WQI, whereas the x-axis

represents the predicted SVM3-WQI. The line of best fit is

drawn as a reference to describe the closeness of the

correlation between the predicted and observed data in the

plot. In the testing phase, SVM3-WQI makes great predictions

(points close to the best fit line) for the Station S03.

Next, the primary objective of executing Scenarios three

through six is to enhance model performance by minimizing

the combination of input variables to the prediction model. The

performance of the models is displayed in Figures 3C–F, 4C–F for

the following scenarios. For the NSE assessment, the prediction

results are generally considered “good”. The WQI predicted at

the three monitoring sites provided the best estimate with a

‘good’ performance for all models assessed. The validation of the

models was exceptional and gave ‘very good’ results for the

assessments WI and PBIAS.

3.2.3 Third scenario: Input data with four
parameters

Scenario three reduced the number of input variables by

employing only four water quality factors for the model. Table 9

shows the results of an analysis of various input combinations.

The water quality parameter combinations are considered after

the model SVM3-WQI with the pH parameter omitted. By

employing DO, COD, SS, and AN as inputs, SVM11-WQI

achieves the optimum performance and prediction accuracy.

Surprisingly, the accuracy of SVM10-WQI does not differ

much from SVM11-WQI with combinations of DO, BOD, SS,

and AN. Incidentally, BOD and COD are identical variables in

both combinations. It is interesting to note that other

combinations, such as SVM8-WQI, SVM9-WQI, and SVM12-

WQI, nevertheless managed to hit the prediction accuracy

benchmarks of r > 0.85, NSE >0.70, and WI > 0.90 across the

stations. Compared to scenario 2, scenario three combines the

deletion of pH with the elimination of other model inputs and

produces a significant result for this predictive modelling that is

close to scenario 2’s accuracy. Hence, all input combinations for

the third scenario are qualified for this predictive modelling. The

findings of the investigation carried out in the third scenario

demonstrated that BOD is the parameter with the weakest

correlation to the accurate predictions of WQI across all

stations. There are a few challenges involved with BOD

testing, including a 5-day incubation period, a long sample

preparation method, and issues achieving reliable, repeatable

findings. The major limitation of BOD analysis from an

operational perspective is time lag. In addition, this scenario

can determine which parameter correlates most significantly

with WQI. Therefore, the exclusion of pH and BOD as

predictive modelling inputs has the least impact on the

prediction of WQI. SVM11-WQI, which eliminates pH and

BOD from the predictive model, had the highest prediction

accuracy across all five sets of possible combinations.

3.2.4 Fourth scenario: Input data with three
parameters

In the fourth scenario, there were a total of three fewer inputs

than in the previous scenario. This scenario is based on the best

model SVM11-WQI from the third scenario which omitted the

parameter of BOD, and pH, and with another parameter. Four

potential combinations were analyzed using predictive

modelling, and the findings are displayed in Table 10. With

only three parameters, all models can predict WQI with a small

prediction error (MAE) and strong statistical indicators of r >
0.80, NSE >0.60, andWI > 0.89 for all stations which are still in a

good range of acceptable models to predict WQI. SVM14-WQI

shows the best prediction accuracy with the combinations of DO,

COD, and ANwhilst those in SVM16-WQI are COD, SS and AN

give the lowest accuracy. The fourth scenario showed that there is

a weak relationship between SS and WQI prediction.

3.2.5 Fifth scenario: Input data with two
parameters

In the fifth scenario, the input number has been further

minimized to two variables. This scenario is based on the best

model SVM14-WQI which excluded parameters of BOD, pH,

and SS and with one more parameter. There are three different

combinations were considered. Surprisingly, by using only two

parameters to predict WQI, the results in Table 11 show that all

models are still able to achieve outstanding prediction accuracy

with low MAE and r > 0.75, NSE >0.56 and WI > 0.84 for all

stations which are still in a range of satisfactory model to predict

WQI. SVM17-WQI shows the best prediction accuracy with the
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combinations of DO and COD only whilst those in SVM18 are

DO and AN give the lowest accuracy. The fifth scenario revealed

that the association between AN and WQI prediction is the

weakest. Again, in this instance, it is discovered that eliminating

AN from the model reduces the model’s inaccuracy.

3.2.6 Sixth scenario: Input data with one
parameter

Based on the best model in the fifth scenario, SVM17-WQI,

just one parameter has to be evaluated for the sixth scenario,

either DO or COD, which are SVM20-WQI and SVM21-WQI,

respectively. Both DO and COD are chemical water quality

indicators. According to all the statistical performance in

Table 12, SVM20-WQI with low MAE, r > 0.53, NSE >0.56,
and WI > 0.84 for all stations, which is still within the acceptable

range for models to predict WQI, parameter DO is more accurate

and gives a more acceptable value for predicting WQI than

parameter COD. COD alone cannot provide sufficient

precision for all stations to predict WQI. The sixth scenario

demonstrated that DO concentration has a substantial effect on

WQI prediction. This is not unexpected given that the vast

majority of previously examined scenarios indicate that when

DO is eliminated from the model, the model’s error will be large,

and its accuracy will deteriorate. The significant DO parameter in

WQI prediction can reveal information on the consequences of

activities such as agricultural non-point sources and nearby

animal farms along the river, as well as land development, on

surface water quality.

3.3 Graphical performance comparisons
of SVM modeling scenarios

In summary, the overall predictive performance of the best

model from each scenario is visualized using scatter plots, boxplots,

Taylor diagrams, and Violin plots. Scatter plots graphically illustrate

the agreement between observed and predicted values, while

boxplots show the performance indicators of the models. Taylor

diagrams combine the root mean square error (RMSE), correlation

coefficient (r), and standard deviation to visually identify the most

accurate predictive model. Finally, Violin plots show the probability

density function of the prediction results.

The most efficient method had the highest r and the lowest

RMSE and MAE (Moriasi et al., 2015; Rodríguez et al., 2021).

Consequently, the most accurate model for each scenario was

selected and validated using the NSE, WI, and PBIAS formulas.

The leading model for each scenario is shown in Tables 7, 8, 9, 10,

11, 12; the values derived by the performance evaluators and the

corresponding score are shown in Table 3. In the NSE

assessment, the minimum level of prediction performance is

generally considered satisfactory, and the highest accuracy

provided the best estimate with "very good" performance for

all stations. The validation of the prediction model was

exceptional and provided "very good" results for both the WI

and PBIAS assessments.

Figure 5 shows a boxplot representation of the performance

of the best models from all scenarios (r, NSE, WI, and PBIAS).

There is a strong positive relationship between the predicted

WQI and the combination of input parameters, with 0.99< r

<0.70. While, NSE > 0.5 identifies 100% of the predicted WQI as

"satisfactory" to "very good" and all predicted data having a

positive NSE, indicating that the model outperformed the

mean function used as an indicator for all predictions. The

results of the validation were remarkable. In terms of the WI

-score and the PBIAS scores, 100% of the predicted data are

classified as "good’.

In addition, the models in the testing phase are also evaluated

using Taylor diagrams (see Figure 6). As mentioned earlier, in a

Taylor diagrams, r, standard deviation, and RSME are plotted,

and the point corresponding to the model with the best predictive

performance has the smallest distance from the “observed” point.

Again, the Taylor diagrams show that in the test phase, the

SVM1 and SVM3 models are characterized by the best predictive

performance. Fortunately, the other fitted models are in the same

reliable range as the predictive WQI model.

Finally, Figure 7 compares the observed and predicted

dispersion of WQI values in Violin plot diagrams and shows the

probability density function with different quartiles (quartile-25%,

quartile-50%, quartile-75%). The performance of the six best

predictive models from each scenario is very similar, with the

mean predicted and observed values not too far apart, indicating

the same status of the WQI. According to the guidelines of DOE, a

river with WQI values of 60–80 is considered slightly polluted

(Department of Environment Malaysia, 2017). Moreover, the class

of WQI predicted in each scenario in the Class III is the same as the

observed class based on the INWQS. This confirms what has already

been found with other means of visualizing predictive performance.

All the best models have promising overall performance. The

probability density function shapes further confirm this.

4 Conclusion

Predicting the quality of water is crucial for pollution monitoring

and compliance with water resource environmental standards. The

complexity and variety of water quality throughout a watershed

necessitate a reliable and adaptable WQI model to reduce the

impact of nonlinearity and improve prediction performance. To

predict WQI in the Langat River basin, a data-driven model with

an SVM-based Nu-RBF algorithm with 10-fold cross-validation was

employed in this work. Combining various input parameters resulted

in the development of a six-scenario sensitivity analysis. The

performance of twenty-one different models was compared.

According to Bui et al. (2020), no model consistently performs

better in every scenario. All models should be analyzed to discover

whichmodel performs optimally in which circumstances. Aside from
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the structure of a model, choosing the optimal combination of input

variables is one of the most influential factors that affect performance.

The following are the most significant conclusions of the study:

• The first scenario showed that the SVM model can easily

imitate natural behavior and learn its nonlinearity by

avoiding the calculation of sub-indices and instead using

the raw physical values of parameters. It can do this while

still getting a high WQI score.

• As a result of the second scenario, the statistical evaluator

demonstrates the SVM model’s capacity to predict the

WQI even without the original six parameters, with a

high degree of accuracy (r, NSE, and WI criteria), all of

which are greater than 0.9. The modelling process also

revealed that the DO parameter is the most influential

factor in determining WQI. It was subsequently followed

by BOD and COD. The pH value is the least important

determinant of WQI. A notable finding is that excluding

DO from the model reduces overall WQI performance.

• In the third through fifth scenarios, it was discovered that

applying various variable reduction combinations resulted

in varying degrees of model performance and that the

impacts of modifying the inputs on the models for this

research area had inconsistent and divergent effects on

modelling in other catchments, even when employing the

same variable combinations. The models indicated that the

variables with the greatest r > 0.8 and NSE >0.75 provide

the most accurate predictions. The combination of factors

with extremely low r and NSE has a detrimental effect on

predictive ability.

• The proposed model SVM-based Nu-RBF algorithm is a

dependable and economical way to improve surface water

quality management. It is successful at predicting WQI by

reducing the number of input variables with high accuracy.

This model is likely to be much more beneficial in developing

countries, where measuring some water quality parameters is

expensive or may not be possible at all.

• This model has the potential to be implemented on other

rivers with similar water quality and land use trends to

enhance monitoring and environmental management.

• In the end, the model will greatly improve and expedite

data-driven decision-making by making data more

accessible and attainable without human interaction.
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Nomenclature

n Number of observations

yiobserved Observed WQI

yipredicted Predicted WQI

�Yobserved Average of observed WQI

�Ypredicted Average of predicted WQI

AN Ammoniacal nitrogen

BOD Biochemical oxygen demand

COD Chemical oxygen demand

DO Dissolved oxygen

DOE Department of environment

MAE Mean absolute error

NSE Nash Sutcliffe efficiency

PBIAS Percentage of bias

pH Potential hydrogen

r Pearson correlation coefficient

RMSE Root mean square error

SS Suspended solids

SVM Support vector machine

WI Willmott’s index of agreement

WQI Water quality index

DOE-WQI Water quality index implemented by DOE

SVM-WQI Water quality index simulated by SVM
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method for WQI analysis. One of the major challenges with the current calculation of the WQI is that it

requires a series of sub-index calculations that are time consuming, complex, and prone to error. In

addition, the WQI cannot be calculated if one or more water quality parameters are missing. In this

study, the optimization method of WQI was developed to address the complexity of the current

process. The potential of data-driven modeling, i.e., Support Vector Machine (SVM) based on Nu-Radial

basis function with 10-fold cross-validation, was developed and explored to improve the prediction of

WQI in Langat watershed. A thorough sensitivity analysis under six scenarios was also conducted to

determine the efficiency of the model in WQI prediction. In the first scenario, the model SVM-WQI

showed exceptional ability to replicate the DOE-WQI and obtained statistical results at a very high level

(correlation coefficient, r > 0.95, Nash Sutcliffe efficiency, NSE >0.88, Willmott’s index of agreement, WI

> 0.96). In the second scenario, the modeling process showed that the WQI can be estimated without

any of the six parameters. It can be seen that the parameter DO is the most important factor in

determining the WQI. The pH is the factor that affects the WQI the least. Moreover, scenarios three to

six show the efficiency of the model in terms of time and cost by minimizing the number of variables

in the input combination of the model (r > 0.6, NSE >0.5 (good), WI > 0.7 (very good)). In summary, the

model will greatly improve and accelerate data-driven decision making in water quality management

by making data more accessible and attractive without human intervention. Copyright © 2023 Mamat,

Mohd Razali and Hamzah.
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