
 Available online at www.CivileJournal.org 

Civil Engineering Journal 
(E-ISSN: 2476-3055; ISSN: 2676-6957) 

Vol. 7, No. 09, September, 2021 

 

 

 

  

 

 

    

1608 

 

A Comparison of Multiple Imputation Methods for Recovering 

Missing Data in Hydrological Studies 

 

Fatimah Bibi Hamzah 1, 2*, Firdaus Mohd Hamzah 1*, Siti Fatin Mohd Razali 1, 

Hafiza Samad 2 

1 Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia. 

2 Faculty of Computing and Multimedia, Kolej Universiti Poly-Tech Mara Kuala Lumpur, Jalan 6/91, Taman Shamelin Perkasa, 56100 

Kuala Lumpur, Malaysia. 

Received 02 May 2021; Revised 31 July 2021; Accepted 11 August 2021; Published 01 September 2021 

Abstract 

Missing data is a common problem in hydrological studies; therefore, data reconstruction is critical, especially when it is 

crucial to employ all available resources, even incomplete records. Furthermore, missing data could have an impact on 

statistical analysis results, and the amount of variability in the data would not be fittingly anticipated. As a result, this study 

compared the performance of three imputation methods in predicting recurrence in streamflow datasets: robust random 

regression imputation (RRRI), k-nearest neighbours (k-NN), and classification and regression tree (CART). Furthermore, 

entire historical daily streamflow data from 2012 to 2014 (as training dataset) were utilised to assess and validate the 

effectiveness of the imputation methods in addressing missing streamflow data. Following that, all three methods coupled 

with multiple linear regression (MLR), were used to restore streamflow rates in Malaysia's Langat River Basin from 1978 

to 2016. The estimation techniques effectiveness was evaluated using metrics inclusive of the Nash-Sutcliffe efficiency 

coefficient (CE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE). The results confirmed 

that RRRI coupled with MLR (RRRI-MLR) had the lowest RMSE and MAPE values, outperforming all other techniques 

tested for filling missing data in daily streamflow datasets. This indicates that the RRRI-MLR is the best method for dealing 

with missing data in streamflow datasets. 
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1. Introduction 

Missing data in hydrological models is a prevalent problem owing to natural disasters, improper operation, and 

battery drainage, which restrict hydrological analysis [1, 2] and has remained unsolved regardless of advancements in 

missing data imputation techniques over the years [3]. Missing data reconstruction is crucial, especially in an event 

where all available resources, including partial information, must be used. The lack of particular data can pose severe 

problems in hydrological studies, resulting in uncertainty and low efficiency of water resource systems [4-6].  

Even minor data breaches can prohibit the computation of significant summary statistics and hydrological indexes, 

such as monthly runoff totals or n-day minimum flows, restricting analysis and explanation of historical flow variability 

[7]. Water development system planning, hydraulic structure design, and water resource management are all hampered 
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by these gaps and breaks [8]. Additionally, extra expenses may be spent if a modelling system or decision support system 

eventually demands the utilisation of this measured data. As a result of these disadvantages, gaps must be filled, and the 

handling of missing data should be prioritised in the data preparation procedure. 

The most convenient method for dealing with missing data is to delete the entire observations with partial data and 

analyse the remaining complete data [6]. On the other hand, deleted data may result in discontinuous data, resulting in 

information loss and skewed conclusions. In recent years, however, various data estimation approaches have been 

proposed and widely debated in relevant literature to solve this challenge. These approaches range from simple classic 

statistical methods such as replacing mean, median, or alternative location stations for each missing value to advanced 

computational techniques.  

For example, Hirsch (1979) and Wallis et al. (1991) [9, 10] addressed reconstruction methods for daily data utilising 

data from neighbouring stations. In another study, the missing consecutive streamflow was reconstructed using the k-

NN algorithm, and the impact of increasing the value of k on the results was also demonstrated [11]. Recent work by 

Cheng and Syu (2019) [12] compared the k-NN average (kNN-AVG) algorithm to the backpropagation neural network 

(BPNN) in wireless positioning systems. Due to BPNN’s learning capacity, the study discovered it improved area 

positioning accuracy more than kNN-AVG. Meanwhile, in Worland et al. (2018) [13] study, the performance of eight 

machine learning models (including k-NN) and four baseline models to forecast hydrological low-flow indices in 

ungauged basins in South Carolina, Georgia, and Alabama, USA, was examined. The study found that machine learning 

models produced much-reduced cross-validation errors than baseline models. Another study used four different 

approaches to substitute missing meteorological data: linear interpolation, mode imputation, k-NN, and multivariate 

imputation by chain equations (MICE). When the k-NN method was used to the test data, the prediction performance 

provided results closest to the original data with no missing values. The prediction model’s performance remained steady 

even when the missing data rate rose [14]. 

Several recent studies have proposed techniques for filling in missing hydrological data utilising CART approaches 

or random forests derived from CART for missing streamflow records imputation. According to these studies, the CART 

model outperformed other classification methods in terms of explained variance [15-17]. Similarly, in Erdal et al. (2013) 

[18] study, CART was utilised for monthly streamflow forecasting, with a support vector regression (SVR) model 

serving as the benchmark model. CART was demonstrated to outperform SVR in both the training and testing stages.  

Regression methods have long been utilised in statistical approaches to reconstruct missing streamflow data [19]. 

MICE, a well-known technique for performing multiple imputations, employs sequential regression modelling as well 

[20, 21]. The aim is to simulate flow at one gauge as a function of flow at another or several gauges. In Beauchamp et 

al. (1989) [19], regression and time series methods were utilised to synthesise and predict streamflow at a downstream 

gauge over an upstream gauge in California. According to the study, either method produced logically good estimations 

and projections of the flow at the downstream gauge. In another study, an MLR model was employed to estimate 

streamflow in the Wainganga River. According to the study, the method employed was one of the simplest and fastest 

ways to compute runoff [22]. Furthermore, Gyau-Boakye and Schultz (1994) study [23] examined ten well-known 

techniques, including interpolation, recursive models, autoregressive models, regression, and non-linear models and 

concluded that the interpolation and multiple regression models fared well. A detailed outline of techniques used in 

hydrology for the reconstruction of missing data, including an applied comparison of simple and multiple regression 

models was presented in Harvey et al. (2012) [7]. The study revealed that when multiple input variables are included, 

accuracy improves. 

However, no research on the reconstruction of missing streamflow data utilising effective RRRI techniques had been 

conducted before. As a result, this study’s objectives were twofold: (1) to reconstruct missing flow data from the Langat 
River Basin using RRRI from the statistical field in comparison to machine learning techniques: k-NN and CART; and 

(2) to evaluate the performance of imputation methods coupled with the MLR model in forecasting future daily 

streamflow values. The findings of this study are likely to aid in the development of the best techniques for data 

imputation that allow for the reconstruction of entire daily streamflow datasets.  

2. Area of Study 

The Langat River Basin is located in the southernmost state of Selangor and upstate of Negeri Sembilan, especially 

between latitudes 2o 40’M 152” N to 3o 16’M 15” N and longitudes 101o 19’M 20” E to 102o 1’M 10” E in the western 
part of Peninsular Malaysia, as seen in Figure 1. The basin comprised an area of approximately 2,394.38 km2, with a 

major river channel stretching for around 141 km. The river runs southward towards the lower mainland and westwards 

towards the coast of the Selangor state, with its mouth is located in the Straits of Malacca [24]. This river basin, 

Malaysia's most urbanised river basin, is considered to compensate for the advantages of Klang Valley spill-over 

development [25, 26]. It is a critical raw water resource for drinking water as well as other activities such as recreation, 

industrial usage, fishing, and agriculture [27]. This study looked at four Langat River sub-basins (Kajang, Dengkil, Lui, 

and Semenyih). 



Civil Engineering Journal         Vol. 7, No. 09, September, 2021 

1610 

 

 

 

Figure 1. Map of Langat River Basin 

The Langat Basin is impacted by two types of monsoons in terms of hydrometeorology: the northeast and southwest 

monsoons, which occur from November to March and May to September, respectively [28, 29]. The southwest monsoon, 

which blows over the Malacca Strait has the most impact on the climate of the basin [30]. The Langat River Basin has 

four flow rate gauging stations: Dengkil and Kajang at Langat River, Kg. Rinching at Semenyih River, and Kg. Lui at 

Lui River. The characteristics of sub-basins connected with Langat Basin gauging stations regulated by the Department 

of Irrigation and Drainage (DID) are depicted in Table 1. 

Table 1. Overview of the sub-basins allied with gauging stations of the Langat Basin 

Sub-Basin Hulu Langat Hulu Langat Semenyih Lui 

Station No. 2816441 2917401 2918401 3118445 

Station name Langat River at Dengkil Langat River at Kajang Semenyih River at Kg. Rinching Lui River at Kg. Lui 

River Langat Langat Semenyih Lui 

Location in the basin Lower catchment Middle catchment Middle catchment Upper catchment 

Latitude 02o 59’ 34” 02o 59’ 40” 02o 54’ 55” 03o 10’ 25” 

Longitude 101o 47’ 13” 101o 47’ 10” 101o 49’ 25” 101o 52’ 20” 

Area (km2) 1251.4 389.4 236 68.4 

Period of Data Availability  

(with missing data) 
1978 -2016 

Period of Data Availability  

(without missing data) 
2012 - 2014 

Notes: Data obtained from Malaysia's DID. 

High-dimensional data obtained from Malaysia’s DID, Ampang, Selangor, recorded from 1978 to 2016 was utilized 

in this study. The streams have been monitored constantly and recorded in m3/s as daily mean flow rates. Of the 56,980 

data points, 12.5% had missing values. Datasets containing 10 to 25% missing values are classified as moderate data 

[31]. Furthermore, as stated in Bennett (2001) study [32], if the percentage of missing data exceeds 10%, the statistical 

analysis is likely to be skewed. A large number of time series data are necessary to get a precise outline of the streamflow 

patterns [33]. Aside from that, the reliability of a frequency estimator for a lengthy time series dataset is extremely 

valuable in data analysis since it is closely related to sample size.  
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3. Research Methodology 

This section is split into two major subsections. The techniques for estimating missing data are discussed in the first 

subsection. Meanwhile, the second subsection describes how the performance of the methods utilised is evaluated. This 

study employed a cross-validation methodology on data from 2012 to 2014 to assess the competency of infilling 

methods. This period was chosen as the baseline due to the availability of comprehensive data. The missing daily 

streamflow data were recovered from the entire time series data after being simulated at random. Figure 2 depicts the 

flowchart of imputation and the procedure for integrating missing data into the entire time series. 

 

Figure 2. Flowchart of imputation and the process for incorporating missing data into the entire time series 

3.1. Imputation Methods 

This study compared three methods of imputation to determine the best fit technique to impute missing values in the 

streamflow datasets. The RRRI method is a statistical methodology, whereas k-NN and CART are machine learning 

techniques. Initially, multiple imputation methods were used to fill up all missing values with replacement from the 

observed values. In general, the first variable with missing values (𝑥1) is regressed on all other variables (𝑥2, 𝑥3, … 𝑥𝑘), 

but only on individuals with the observed 𝑥1. Missing values in 𝑥1 are replaced with simulated draws from 𝑥1’s posterior 
predictive distribution. The next variable with missing values (𝑥2) is then regressed on all other variables (𝑥1, 𝑥3, … 𝑥𝑘), 

restricted to individuals with the observed 𝑥2, and using the imputed values of 𝑥1. Missing values in 𝑥2 are again replaced 

by draws from 𝑥2’s posterior predictive distribution. The process is repeated for each variable with missing values in 
turn - this is referred to as a cycle. To stabilise the results, the procedure is typically repeated for several cycles (e.g. 10 

or 20) to produce a single imputed dataset, and the entire procedure is repeated 𝑚 times to produce 𝑚 imputed datasets. 

Following the missing values imputation process, the CE, RMSE, and MAPE for each of the three predicted values were 

then computed. Finally, all three methods were employed in conjunction with MLR to restore streamflow rates in 

Malaysia's Langat River Basin from 1978 to 2016. 

3.1.1. k-Nearest-Neighbor Imputation (k-NN) 

The machine learning-based k-NN imputation, also known as distance function matching, is a donor approach in 

which the donor is chosen by minimising a specified ‘distance’ and the mean is utilized as an imputation estimate [34, 

35]. It represents the local estimate approach, which predicts using just neighbouring states. Local estimators are 

regularly believed to give good results in chaotic time series [11]. The missing values are based on a set number of cases, 

one of which is very certainly the instance of interest [36]. This procedure involves calculating an appropriate distance 

measure, with the distance defined by the auxiliary variables. This study employed the Euclidean distance, one of the 

most prominent methods for measuring distance, and the formula is as follows: 

𝐷(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1  (1) 

where 𝑥𝑖 and 𝑦𝑖  are the query point and a case from the streamflow data sample, respectively. 

The first step in creating predictions using the k-NN method is determining the value of k. According to Yang (1999) 

[37], a larger value of k provides greater weight to accuracy and is more stable since it reduces total noise, but there is 

no assurance. The Elshorbagy et al. (2002) study [11], on the other hand, stated that the smaller the k value, the better 

the estimation of the missing value. The most commonly used rule of thumb is that k equals the square root of the 
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number of points in the training dataset [38]. As a result, this study opted to have a maximum number of k that is less 

than or equal to the square root of the size of the training dataset utilized. This yielded far superior results than 1NN, 

which merely nominated to the class of its nearest neighbour.  

After determining the value of k, predictions can be made using the k-NN method. The imputation procedure by the 

nearest neighbour can be summarized for k neighbours as follows:  

Assuming that there are m observations on n covariates, 𝑋 = 𝑥𝑖𝑠  denotes the corresponding 𝑚 × 𝑛 matrix, where 𝑥𝑖𝑠  represent the 𝑖𝑡ℎ observation of the 𝑠𝑡ℎ variable. Let 𝑂 = 𝑜𝑖𝑠 represent the corresponding 𝑚 × 𝑛 dummy matrix with 

the following entries:  𝑜𝑖𝑠 = {1   𝑖𝑓 𝑥𝑖𝑠  𝑤𝑎𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑0     𝑓𝑜𝑟 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒  (2) 

The 𝐿𝑞 metric for the data observed can be used to compute the distances between two observations 𝑥𝑖  and 𝑥𝑗, which 

are represented in the data matrix by rows. The distance is then calculated as follows: 𝑑𝑞(𝑥𝑖 , 𝑥𝑗) = [𝑑𝑖𝑗 ∑ |𝑥𝑖𝑠 − 𝑥𝑗𝑠|𝑞1(𝑜𝑖𝑠 = 1)𝐼(𝑜𝑗𝑠 = 1)𝑛𝑠=1 ]1/𝑞
 (3) 

where 𝑑𝑖𝑗 = ∑ 1(𝑜𝑖𝑠 = 1)𝐼(𝑜𝑗𝑠 = 1)𝑝𝑠=1  represents the number of valid components in the computation of distances. 

Because parallel views were utilised to conceptualise distances, nearest neighbours were employed. 

3.1.2. Multiple Classification and Regression Tree (CART) 

CART [39] is a well-known classification of machine learning algorithms [39] that employs the concept depicted in 

Figure 3. CART models need predictors as well as cut-points in predictors used to split the sample. The cut-points split 

the sample into larger, homogenous subsamples. The splitting procedure is repeated on both subsamples, allowing a 

succession of splits to form a binary tree [18]. For regression problems, each node in the tree has a splitting rule defined 

by minimising the relative error (RE), which is similar to minimising the sums-of-squares of the split: 

𝑅𝐸(𝑑) = ∑(𝑦𝑙 − 𝑦̅𝐿)2 + ∑(𝑦𝑟 − 𝑦̅𝑅)2𝑅
𝑟=0

𝐿
𝑙=0  (4) 

where 𝑦𝑙 and 𝑦𝑟 are the left and right partitions, respectively, with 𝐿 and 𝑅 observations of 𝑦 in each, and respective 

means 𝑦̅𝐿 and 𝑦̅𝑅. The decision rule 𝑑 is a point in some estimator variable 𝑥 that decides which branches go left and 

which go right. The partitioning rule that minimises the RE is then used to construct the tree node. Figure 3 shows an 

example of a CART framework.  

 

Figure 3. Multiple CART structure 

According to Breiman et al. (1984) [39], a random forest can handle diverse data types, and, being a non-parametric 

method, non-linear (regression) and interaction effects are expected. Assuming 𝑋 =  (𝑋1, 𝑋2, … , 𝑋𝑛) is a 𝑚 × 𝑛-

dimensional data matrix, for an arbitrary variable 𝑋𝑠 that includes missing values at entries 𝑖𝑚𝑖𝑠(𝑠) ⊆ {1, … , 𝑚}, the 

streamflow dataset could be split into two categories: 𝑦𝑜𝑏𝑠(𝑠)
 denotes the observed values of variable 𝑋𝑠, while 𝑦𝑚𝑖𝑠(𝑠)

 denotes 

the missing values of variable 𝑋𝑠. 

To begin, mean or other imputation methods are used to make an initial estimation for the missing values in 𝑋. The 

variables 𝑋𝑠, 𝑠 = 1, … , 𝑝 are then sorted by the number of missing values, beginning with the smallest. Missing values 

are reconstructed for each variable 𝑋𝑠 by first fitting a CART with response 𝑦𝑜𝑏𝑠(𝑠)
 and predictors 𝑥𝑜𝑏𝑠(𝑠)

, and then predicting 

the missing values 𝑦𝑚𝑖𝑠(𝑠)
 by applying the trained CART to 𝑥𝑚𝑖𝑠(𝑠)

. The imputation procedure is performed until a stopping 

criterion is reached. 

𝑥1 ≤ 𝑘1 

𝑥2 ≤ 𝑘2 𝑥1 ≤ 𝑘3 

𝑥2 ≤ 𝑘4 𝑦1 𝑦2 𝑦3 

𝑦4 𝑦5 
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3.1.3. Robust Random Regression Imputation (RRRI) 

RRRI is a less stringent variant of least squares regression that operates with looser assumptions. It offers 

considerably better estimations of the regression coefficients when the data are ambiguous. There are numerous good 

examples of robust methods in the literature, the most often used: the M-estimator, the least median of squares (LMS) 

estimator, and the least trimmed sum of squares (LTS) S-estimator, and the MM-estimator. This study adopted the high 

breakdown and high-efficiency MM-estimator proposed by Yohai (1987) [40]. The following is a simple linear 

regression model: 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖          ; 𝑖 = 1,2,3, … , 𝑛 (5) 

where 𝑦 is the response variable, 𝑥 is the regressor, 𝛼 is the intercept and 𝛽 is the slope, and 𝜀𝑖 is the random error term. 

Assuming that the 𝑘th (𝑘 = 𝑚 + 1, … , 𝑠) cases in the response variable 𝑦 are missing, the MM-estimator is used to 

fit the regression line for the available cases (𝑖 = 1,2,3, … , 𝑚). The estimated regression for the available case is given 

by 𝑦̂𝑖 = 𝛼̂𝑀𝑀∗ + 𝛽̂𝑀𝑀∗ 𝑥𝑖               ;  𝑖 = 1,2,3, … , 𝑚 (6) 

The estimated parameters in (6) and the 𝑥 value corresponding to the missing 𝑦 value are then utilised to reconstruct 

missing 𝑦 values as predicted values. The following is proposed RRRI:  𝑦̂𝑘 = 𝛼̂𝑀𝑀∗ + 𝛽̂𝑀𝑀∗ 𝑥𝑘 + 𝜀𝑘̂∗               ;  𝑘 = 𝑚 + 1, … , 𝑠 (7) 

where the random error term 𝜀𝑘̂∗~𝑁(0, 𝑆), 𝑆 = MSE of the residuals from (6), is added to the predicted values according 

to Little and Rubin (2002) [41]. 

3.1.4. Multiple Linear Regression (MLR) 

Following the replacement of all missing values with multiple techniques, the complete dataset is analysed using 

MLR to determine the best approaches for dealing with missing data in daily streamflow datasets. Regression analysis 

is a statistical technique that examines the relationship between at least two quantitative variables and their predicted 

variables [42]. The MLR model is a widely used statistical technique in many fields, including hydrological data [43, 

44]. The following is how the MLR model parameter is expressed: 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑘𝑋𝑖𝑘 + 𝜀𝑖(𝛽),     𝑖 = 1, … , 𝑁 (8) 

where 𝑌𝑖 is the response variable’s value, 𝛽0, 𝛽1, 𝛽2 𝑎𝑛𝑑 𝛽𝑘are unknown constants, 𝑋𝑦 is the predictor variable’s value, 

and 𝜀𝑖 is the random error. 

3.2. Performance of the Estimation Methods  

In this study, three performance metrics were utilised to assess imputation methods: CE, RMSE, and MAPE. The 

CE index is a well-known metric for assessing the prediction power of hydrological models. The most effective 

performance models aim for a CE value of one (1). Meanwhile, RMSE is a common statistical metric used to assess 

model performance in meteorology, air quality, and climate research investigations. The RMSE statistic, which is a 

measure of the difference between predicted and observed values, offers information about short-term efficiency. 

Another useful measure used extensively in model evaluations is MAPE. Especially, MAPE provides an insight into the 

average deviation of the predicted values from the observed values and the long-term performance of these models. The 

lower the values of RMSE and MAPE values, the better findings of the long-term model. The following formulae can 

be used to compute these statistics: 𝐶𝐸 = 1 − ∑ (𝑦𝑖 − 𝑦̃𝑖)2𝑛𝑖=1∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛𝑖=1  (9) 

𝑅𝑀𝑆𝐸 = √1𝑛 ∑(𝑦𝑖 − 𝑦̃𝑖)2𝑛
𝑖=1 𝑛⁄  (10) 

𝑀𝐴𝑃𝐸 = 1𝑛 ∑ |𝑦𝑖 − 𝑦̃𝑖|𝑦𝑖
𝑛

𝑖=1  (11) 

where 𝑦𝑖 is the observed streamflow data, 𝑦̃𝑖 is the predicted value, 𝑦̅𝑖 indicates the average streamflow data, 𝑛 represents 

the sample size and 𝑘  represents the number of independent variables in the regression equation over daily streamflow 

datasets from the Langat River Basin. 
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4. Results and Discussion 

This study was conducted to find the best imputation method for calculating missing streamflow data comparing k-

NN, CART, and RRRI. The models were first evaluated without missing values on the training dataset from the year 

2012 to 2014. The simulation process was performed in the following flow: a conventional training dataset was 

generated using the missing data rates (i.e. 5, 10, 15, 20, 25, and 30%), and the missing values were substituted with 

new values, acquired using each of the previously mentioned imputation methods. The error was computed by 

subtracting the trained model’s predicted value from the reference model’s predicted value and the data acquired using 
the missing value replacement method. The trained model with the original training data and test data with no missing 

values was used as the reference model. Each method’s performance was evaluated using CE, RMSE, and MAPE. When 

the gap between the estimated and observed values is minimal, RMSE and MAPE will provide the smallest value. 

Meanwhile, CE values can vary from −∞ to 1, with values larger than 0.5 deemed acceptable. The method with the 

greatest CE value and the lowest RMSE and MAPE values was chosen as the best. Table 2 shows the prediction model 

errors, whereas Tables 3-5 display the deviation results. 

Table 2. Error of streamflow reference model 

Year CE RMSE MAPE 

2012 – 2014 0.653 0.346 0.468 

Table 3. Performance of six different percentages of missing data compared based on CE 

Methods 
Missing data rate 

5% 10% 15% 20% 25% 30% 

RRR 0.643 0.699 0.669 0.683 0.701 0.712 

k-NN 0.644 0.698 0.669 0.682 0.697 0.692 

CART 0.637 0.661 0.659 0.661 0.665 0.664 

Table 4. Performance of six different percentages of missing data compared based on RMSE 

Methods 
Missing data rate 

5% 10% 15% 20% 25% 30% 

RRR 0.292 0.291 0.299 0.302 0.305 0.307 

k-NN 0.306 0.313 0.307 0.317 0.310 0.313 

CART 0.362 0.318 0.330 0.318 0.314 0.315 

Table 5. Performance of six different percentages of missing data compared based on MAPE 

Methods 
Missing data rate 

5% 10% 15% 20% 25% 30% 

RRR 0.411 0.415 0.416 0.499 0.461 0.419 

k-NN 0.458 0.435 0.422 0.501 0.464 0.427 

CART 0.476 0.450 0.427 0.501 0.467 0.427 

The consistency of each imputation method was determined using gap analysis, as indicated by reduced gaps between 

training and validation results. According to the aforementioned data (Tables 2 to 5), the RRRI method had the highest 

CE and the lowest RMSE and MAPE values. Conversely, CART was the worst imputation method, having the lowest 

CE and the greatest RMSE and MAPE values. Despite this, CE values indicated that all imputation methods gave 

acceptable results, with values near to one and deviating from the training set by less than 10%. Nevertheless, RMSE 

produced somewhat lower values than the training sets as the missing data rate increased. Meanwhile, MAPE measured 

the magnitude of the error in percentage terms, and the values varied slightly depending on the mean difference between 

the observed known outcome values and the values predicted by the model. As the rate of missing data increased, so did 

the error between the reference and validation models with missing data imputation. This indicated a small error when 

training data were used with no missing values. Even if the missing data rate was only 30%, the training model would 

have followed the pattern of the remaining 70% training data rather than the 30% missing data. Consequently, a 

substantial error went unnoticed despite the existence of missing values in the training data.  
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Later, the model was evaluated for all four sub-basins using a dataset spanning the years 1978 to 2016. The findings 

were then computed as an average of each imputation method results. Table 6 shows the overall performance of each 

method in the reconstruction of data from 1978 to 2016. The RRRI method produced the lowest RMSE and greatest CE 

values, according to the results. Despite this, CE values indicated that all imputation methods gave acceptable results, 

with values near to one. Based on the findings, it is possible to infer that the RRRI method gave the best results, whereas 

k-NN was the worst imputation method for daily streamflow data in Malaysia's Langat River Basin due to the lowest 

CE and greatest RMSE values among the other methods.  

Table 6. Average RMSE and CE values for three imputation methods 

Method RMSE CE 

RRR 8.099 0.900 

k-NN 28.096 0.767 

CART 10.484 0.854 

Notes: The best method is in bold. 

Following the completion of the missing values, the MLR model was used to analyze the whole dataset in this study 

and find the best approaches for dealing with missing data when imputation values were coupled with modelling. The 

performance of imputation methods coupled with an MLR model was evaluated using MAPE and RMSE. Table 7 shows 

the RMSE and MAPE values for each statistical approach for imputing missing values of daily streamflow data in 

Malaysia's Langat River Basin coupled with the MLR model. RRRI-MLR exhibited the lowest RMSE and MAPE values 

of 12.157 and 0.216, respectively, when compared to the other methods. The final results showed that RRRI is the best 

statistical approach for imputing missing values in daily streamflow data when coupled with a regression model. Table 

7 further indicated that the CART-MLR imputation method had low RMSE and MAPE values, putting it on par with 

the RRRI-MLR model. 

Table 7. The outcomes for MLR combined with imputation methods. 

Method RMSE MAPE 

k-NN-MLR 23.784 1.397 

CART-MLR 15.778 0.487 

RRR-MLR 12.157 0.216 

Notes: The best method is in bold. 

Finally, visual inspection/ analytic data were drawn up with observed and predicted values for the kNN-MLR, 

CART-MLR, and RRRI-MLR models. Figure 4 depicts the results of three imputation methods for replacing 7,124 

missing daily streamflow data points in Malaysia's Langat River Basin and shows the comparable patterns of imputed 

daily streamflow values from all three methods. All models, for instance, responded with comparable peaks and 

durations in streamflow events. 

It can be concluded that the RRRI-MLR method achieved the best performance, whereas k-NN-MLR performed the 

least. This was not surprising for the k-NN method from the aspects of the most popular methods and the methodological 

simplicity; the method is a lazy learner, unable to learn anything from the training data. The training data was instead 

used for classification, which can result in poor algorithm generalization and outliers susceptibility [45]. This was 

consistent with a recent finding in Miró et al. (2017) [46], where advanced linear methods produced far superior results 

than traditional methods, such as k-NN. To predict a new instance label, the k-NN algorithm searches the data for the k 

closest neighbours to the new instance and sets the predicted class label to be the most prevalent label among the k 

closest neighbouring points. In each prediction, the algorithm must compute and sort the distance and data for a number 

of training instances, which might be time-consuming. Another possible consequence of changing the k value is the 

change in the class label [47]. 

On the other hand, the CART method performed better than k-NN when coupled with MLR. The CART method is 

recognised for its simplicity, robustness, ability to handle multicollinearity and skewed distributions, and adaptability to 

interactions and non-linear relationships [21]. This conclusion was consistent with previous studies [17, 18], which 

found that the CART model outperformed other classification algorithms in terms of explained variance. Regardless of 

how flexible and interpretable CART is, it is critical to understand how it works to establish and cross-validate suitable 

tuning parameters, such as tree depth or split number [48]. The CART technique can also be time-intensive when applied 

to large datasets. 
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Figure 4. kNN-MLR, CART-MLR and RRRI-MLR data imputation results for 7,124 missing streamflow data 

Comparatively, the results revealed that the robust technique of this study prevailed over the investigated non-robust 

approaches. The obvious reason for this is that RRRI with MM-estimator has high asymptotic efficiency, about 95% 

compared to ordinary least squares (OLS) under Gauss-Markov assumptions, and a high breakdown (about 50% ~ n/2) 

[49]. RRRI add a random error term in which without adding this term, for the same value of independent variables, it 

will result in the same response which is not true in reality. Furthermore, when the error percentage is mirrored by the 

missing data proportion, the RRRI technique produces a lower error than the k-NN and CART techniques. These 

simulations demonstrate unequivocally that the RRRI technique is the most effective missing data imputation method 

for reconstructing missing streamflow data. 

5. Conclusion  

Missing data is a frequent constraint of hydrological research and usually leads to misinterpretations of statistical 

output and hydrological modelling techniques. Therefore, method performance evaluation is necessary to reduce the 

impact of missing data. Several techniques have been proposed in the literature to manage missing data. However, a 

suitable approach to be used as the missing data trend and mechanism are still unclear. Researchers typically exclude 

observations with missing data or replace them through naive methods, such as the mean or mode of all other 

observations, because of convenience, even though these methods are statistically significantly worse. In this study, a 

novel statistical approach to treating and estimating missing data in streamflow datasets was proposed. The findings 

demonstrated that when coupled with MLR, the proposed method, RRRI with MM-estimator, gave the best results. The 

RRRI-MLR method outperformed k-NN and CART on all three performance metrics (CE, RMSE, and MAPE), with a 

higher adjusted CE and lower RMSE and MAPE. This result indicates that the RRRI technique has the lowest variance 

between the reference model and the prediction model with missing data imputation. As a result, using the RRRI 

technique to address missing streamflow data can produce the best results. As such, this method should be classified 

among suitable contenders for managing missing data in streamflow datasets. 

5.1. Limitations and Directions for Future Research 

This study was based on k-NN, CART, and RRRI performance as conditional models for imputing missing flow 

records. Four gauging stations were used to analyze the data matrices of the Langat River Basin. However, other critical 

streamflow characteristic contributors, such as rainfall, temperature, topography, or other study area parameters were 

not examined due to data limitations. Ignoring such parameters may result in erroneous data prediction. In future studies, 

the performance of the proposed imputation method should be compared to other imputation methods like support vector 

machines and artificial neural networks. In order to examine the robustness of results, a sensitivity analysis may also be 

beneficial with several methods for managing missing data. 
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